Current Issue Cover
目标识别中的稳定图像特征组合发掘

姜永兵1,2, 彭启民1(1.中国科学院软件研究所综合信息系统国家级重点实验室, 北京 100190;2.中国科学院研究生院, 北京 100049)

摘 要
针对图像局部特征组合稳定性差和区分力不足的问题,通过对由图像半局部邻域特征挖掘得到的频繁项集进行统计学过滤、模式分解、模式总结及模式组成项间几何关系的建模,提出两种具有较强表征力和区分力的图像中层表示模型:类间共用稳定模式(inter-class common stable pattern)和类内特殊稳定模式(intra-class special stable pattern)。在将这两种模式引入目标识别框架后,得到了相比同类方法较好的结果。
关键词
The mining of stable image feature-compositions in object recognition

Jiang Yongbing1,2, Peng Qimin1(1.National Key Laboratory of Integrated Information System Technology, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;2.Graduate University of Chinese Academy of Science, Beijing 100049, China)

Abstract
In order to improve the stability and discrimination of local feature combination for image representation,two image mediate-level representations,Inter-CSP(inter-class common stable pattern) and ntra-SSP(intra-class special stable pattern) are proposed.The details of processing are given,which can be divided into statistic-filtering,pattern decomposition,pattern summarization,and item-based geometric relation modeling on frequent item_sets mined from image semi-local features.A recognition framework is introduced based on Inter-CSP and Intra-SSP.The experiment results demonstrate that these two kinds of patterns are superior to classical methods.
Keywords

订阅号|日报